Wednesday, August 06, 2008

Thermodynamics---Lesson 3

Thermodynamic Potentials


A thermodynamic potential is a scalar potential function used to represent the thermodynamic state of a system. One main thermodynamic potential which has a physical interpretation is the internal energy, U. It is the energy of configuration of a given system of conservative forces (that is why it is a potential) and only has meaning with respect to a defined set of references (or datums). In thermodynamics, certain forces, such as gravity, are typically disregarded when formulating expressions for potentials. For example, while all the working fluid in a steam engine may have higher energy due to gravity while sitting on top of Mt. Everest than it would at the bottom of a the gravitational potential energy term in the formula for the internal energy would usually be ignored because changes in gravitational potential within the engine during operation would be negligible. Four common thermodynamic energy potentials are: Internal Energy, Entropy, Enthalpy, Gibbs Free Energy.


Internal Energy
Internal energy is defined as the energy associated with the random, disordered motion of molecules. It is separated in scale from the macroscopic ordered energy associated with moving objects; it refers to the invisible microscopic energy on the atomic and molecular scale. For example, a room temperature glass of water sitting on a table has no apparent energy, either potential or kinetic . But on the microscopic scale it is a seething mass of high speed molecules traveling at hundreds of meters per second. If the water were tossed across the room, this microscopic energy would not necessarily be changed when we superimpose an ordered large scale motion on the water as a whole.


Entropy
In thermodynamics entropy is a measure of the unavailability of a system’s energy to do work. It is a measure of the randomness of molecules in a system and is central to the second law of thermodynamics and the fundamental thermodynamic relation, which deal with physical processes and whether they occur spontaneously. Spontaneous changes, in isolated systems, occur with an increase in entropy. Spontaneous changes tend to smooth out differences in temperature, pressure, density, and chemical potential that may exist in a system, and entropy is thus a measure of how far this smoothing-out process has progressed.
When a system's energy is defined as the sum of its "useful" energy, (e.g. that used to push a piston), and its "useless energy", i.e. that energy which cannot be used for external work, then entropy may be (most concretely) visualized as the "scrap" or "useless" energy whose energetic prevalence over the total energy of a system is directly proportional to the absolute temperature of the considered system. Entropy is a function of a quantity of heat which shows the possibility of conversion of that heat into work. The increase in entropy is small when heat is added at high temperature and is greater when heat is added at lower temperature. Thus for maximum entropy there is minimum availability for conversion into work and for minimum entropy there is maximum availability for conversion into work. Entropy is one of the factors that determines the free energy of the system. This thermodynamic definition of entropy is only valid for a system in equilibrium (because temperature is defined only for a system in equilibrium), while the statistical definition of entropy (see below) applies to any system. Thus the statistical definition is usually considered the fundamental definition of entropy.
Entropy increase has often been defined as a change to a more disordered state at a molecular level. In recent years, entropy has been interpreted in terms of the "dispersal" of energy. Entropy is an extensive state function that accounts for the effects of irreversibility in thermodynamic systems. In terms of statistical mechanics, the entropy describes the number of the possible microscopic configurations of the system. The statistical definition of entropy is the more fundamental definition, from which all other definitions and all properties of entropy follow.


Enthalpy
In thermodynamics and molecular chemistry, the enthalpy or heat content (denoted as H, h, or rarely as χ) is a quotient or description of thermodynamic potential of a system, which can be used to calculate the "useful" work obtainable from a closed thermodynamic system under constant pressure and entropy.
In terms of thermodynamics, enthalpy can be calculated by determining the requirements for creating a system from "nothingness"; the mechanical work required, pV differs, based upon the constancy of conditions present at the creation of the thermodynamic system.
Internal energy, U, must be supplied to remove particles from a surrounding in order to allow space for the creation of a system, providing that environmental variables, such as pressure (p) remain constant. This internal energy also includes the energy required for activation and the breaking of bonded compounds into gases.
This process is calculated as U + pV, to label the amount of energy or work required to "set aside space for" and "create" the system; describing the work done by both the reaction or formation of systems, and the surroundings. For systems at constant pressure, the change in enthalpy is the heat received by the system plus the non-mechanical work that has been done.
Therefore, the change in enthalpy can be devised or represented without the need for compressive or expansive mechanics; for a simple system, with a constant number of particles, the difference in enthalpy is the maximum amount of thermal energy derivable from a thermodynamic process in which the pressure is held constant.
The term pV is the work required to displace the surrounding atmosphere in order to vacate the space to be occupied by the system.


Gibbs Free Energy
In thermodynamics, the Gibbs free energy is a thermodynamic potential which measures the "useful" or process-initiating work obtainable from an isothermal, isobaric thermodynamic system. Technically, the Gibbs free energy is the maximum amount of non-expansion work which can be extracted from a closed system or this maximum can be attained only in a completely reversible process. When a system changes from a well-defined initial state to a well-defined final state, the Gibbs free energy ΔG equals the work exchanged by the system with its surroundings, less the work of the pressure forces, during a reversible transformation of the system from the same initial state to the same final state.
The Gibbs free energy, originally called available energy, was developed in the 1870s by the American mathematical physicist Willard Gibbs. In 1873, in a footnote, Gibbs defined what he called the “available energy” of a body as such:

"The greatest amount of mechanical work which can be obtained from a given quantity of a certain substance in a given initial state, without increasing its total volume or allowing heat to pass to or from external bodies, except such as at the close of the processes are left in their initial condition."

The initial state of the body, according to Gibbs, is supposed to be such that "the body can be made to pass from it to states of dissipated energy by reversible processes". In his 1876 magnum opus On the Equilibrium of Heterogeneous Substances, a graphical analysis of multi-phase chemical systems, he engaged his thoughts on chemical free energy in full.
In a simple manner, with respect to STP reacting systems, a general rule of thumb is:

"Every system seeks to achieve a minimum of free energy."

Hence, out of this general natural tendency, a quantitative measure as to how near or far a potential reaction is from this minimum is when the calculated energetics of the process indicate that the change in Gibbs free energy ΔG is negative. Essentially, this means that such a reaction will be favored and will release energy. The energy released equals the maximum amount of work that can be performed as a result of the chemical reaction. Conversely, if conditions indicated a positive ΔG, then energy--in the form of work--would have to be added to the reacting system to make the reaction go.

No comments: